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A novel thermally stable tetranuclear cadmium carbonyl
complex [Cd(CO)3(C6H3Cl)]4¢2H2O has been synthesized for
the first time through a green path with an overall yield of 35%.
The synthetic route features a new pathway, creating the two
ortho-positions with respect to the chlorine atom in the aryl rings
for bridging two cadmium metal centers. The title complex has
been characterized by microanalytical, infrared spectroscopic,
and thermal methods while its structure has been established by
single-crystal X-ray diffraction supported by 1H, 13C, and
113CdNMR data.

Increasingly demanding environmental legislation and the
resulting drive toward clean technology in the chemical industry,
“enviroeconomics” will become a driving force behind new
products and processes. Today carbonylation processes are used
extensively,13 for example, the oxo and Monsanto processes.
Over the past years, a series of carbonyl complexes of divalent
metal ions have been reported, especially for 1st and 2nd series
transition-metal ions. Zinc and cadmium metal ions are more
electropositive than their neighbors in the transition series and
show some resemblances to the d-block elements in their ability
to form complexes, particularly with ammonia, amines, halide,
and cyanide ions. However, for complexes even with cyanide
ion, it must be borne in mind that the possibility of d³ bonding
between these metal ions and the ligand is very much lowered
compared to their transition analogs simply owing to their
electronic structure. In fact, carbonyl, nitrosyl, olefin complexes,
etc., of the type given by transition metals are not known so far
for either zinc or cadmium ion. Moreover, the coordination of
aromatic hydrocarbons to transition metal is of considerable
interest in organometallic chemistry.4 Aromatic systems can act
as ligands for group III and lanthanoid elements, although the
intrinsic electropositive nature of these metal ions indicates that
the bonding is best described as ionic with the arene ligands
formally carrying considerable negative charge.57 Efforts to
make polymetallic aromatic complexes are frequently frustrated
due to the difficulty of introducing the aromatic component in
the coordination sphere of the metal, especially for cadmium
ion. Investigation of polymetallic aromatic compounds has been
done by many authors.8 We have tried several times to prepare
polymetallic aromatic carbonyl complex by passing carbon
monoxide directly to the reaction medium under different
reaction conditions but failed. To achieve this goal, we have
adopted a method of in situ formation of carbon monoxide in the
reaction system and were successful in isolating the novel
tetranuclear organocadmium complex reported herein. To the
best of our knowledge, it is the first reported complex of the
cadmiumcarbonyl class.

We treated an aqueous-methanolic solution of cadmium(II)
trichloroacetate with o-vanillin, which forms the reported novel
organocadmium complex.9

The most plausible mechanism for the formation of this
novel carbonyl complex with a fascinating structural moiety has
been delineated in Scheme 1, consisting of two steps (Step I and
Step II) as shown above.

In the first step trichloroacetate anion on heating at around
60 °C with watermethanol (1:10) mixture gives chloroform,10

which in the presence of sunlight decomposed to give carbon
monoxide. In the second step oxidation of o-vanillin gives
vanillic acid (A) which undergoes subsequent chloroformylation
(B), esterification (C), and chlorination (D) followed by
simultaneous hydrolysis (E) and decarboxylation (F) leading to
the titled cadmium carbonyl complex. The esterification of
the methoxy group is facilitated due to the coordination of Cd2+

ion, which acts as a Lewis acid through coordination of the
methoxy oxygen favoring the insertion of a carbonyl group. The
striking observation is that here CO acts as an oxidizing species
in converting methoxy (OMe) to ester (COOMe) and also
simultaneously acts as an electron-pair donor ligand. In the
presence of acid, the carbonyl oxygen of the ester group
becomes protonated and then undergoes hydrolysis via bi-
molecular acid-catalyzed mechanism in which acyl oxygen bond
cleavage occurs and the OMe group is eliminated as MeOH. The
spontaneous degradation of E with the CC bond cleavage via
decarboxylation is facilitated by the electron-withdrawing effect
of chlorine, which generates 2,6 binegative chloroaryl ion. This
binegative chloroaryl ion acting as a nucleophilic ligand toward
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Scheme 1. Plausible mechanistic path for the formation of the
title complex.
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the cadmium metal ion present in the system resulted in the
expected compound.

The presence of carbonyl in the complex was confirmed by
IR spectroscopy. The absorption band attributed to the terminal
carbonyl groups appeared in the region 21202245 cm¹1

[2225(s), 2190(s), 2245(m), and 2120(w)], typical for tricarbon-
yl stretching.11 Elemental analysis9 and spectral studies confirm
the 1:1 stoichiometry between CdII and bridging ligand. NMR
spectroscopic data12 confirm the symmetric structure of the
complex. The positive chemical shift (¤ + 37.11 ppm) of 113Cd
strongly supports the attachment of donating ligands with the
metal. A TGA study of the complex in a dynamic nitrogen
environment shows the elimination of two molecules of lattice
water in a single step within 4560 °C. Later on the decom-
position of the anhydrous complex started at 80 °C with the
elimination of carbon monoxide followed by decomposition.
The liberation of carbon monoxide has been confirmed by
qualitative test.

X-ray crystallographic13 studies revealed that the complex, a
square-shaped tetramer, consists of [Cd(CO)3(C6H3Cl)]4 units
linked by chloroaryl ligands, as shown in Figure 1. There are
also two water molecules per complex in the crystal lattice. The
occupancy of water molecules is partial and disordered. Within a
given tetramer, each chloroaryl ligand acts as a chelate to one
cadmium atom through the chlorine and one ortho carbon while
the other ortho carbon with respect to chlorine substituent of the
aryl group is utilized to form a bridge with another cadmium
atom. The chloroaryl ligands act as the four edges of the square
defined by the four cadmium atoms. The four chloroaryl ligands
may be divided into two sets. Two ligands in each set are slightly
tilted with respect to each other. The closest CC separations
between two chloroaryl rings of two sets are 3.356 (C15C27)
and 3.478¡ (C21C33), while with respect to their coordinating
ends the CC separations are 5.381 (C18C30) and 5.409¡
(C24C36). However, the ring planes of each set of ligands lie
approximately perpendicular with respect to each other as well
as the mean square plane defined by the metal centers. The
tetramer possesses an approximate twofold symmetry normal to

the square plane and passing through its midpoint. The mean
square plane is distorted, evident from the relative CdCd
separations (Cd1Cd2, 5.880; Cd2Cd3, 5.892; Cd3Cd4,
5.841; Cd1Cd4, 5.857; Cd1Cd3, 8.261, and Cd2Cd4,
8.169¡). The cadmium atoms also deviate from the mean basal
plane and remain coplanar within «0.415¡. Each cadmium
carries three carbon monoxide ligands at terminal positions,
giving the metal center an overall octahedral geometry. How-
ever, there are substantial departures from the ideal octahedral
geometry, due to mainly the formation of chelate bonds by the
chloroaryl ligands to each cadmium. The relevant bite angles,
65.4(5), 64.5(5), 65.4(4), and 65.2(5)° for Cd(1), Cd(2), Cd(3),
and Cd(4) respectively, are considerably narrower than 90°,
expected for ideal geometry. Other angles involving the cis
atoms range from 82.9(5) to 105.5(9)° and those involving the
trans atoms range from 167.0(9) to 177.3(9)°. These values also
indicate considerable distortions in the geometry.

The CdC bond lengths involving the carbonyl groups
range from 1.80(2) to 1.90(2)¡ and have an average value of
1.86¡. These values may be compared with the sum of the
covalent radius of carbon and ionic radius of Cd2+ (0.77 +
1.09 = 1.86¡).14 However, the CdC distances involving the
aryl rings are significantly longer with the values lying in the
range 2.18(2) to 2.24(2)¡ with an average value of 2.19¡. The
CdCl bond lengths vary from 2.514(6) to 2.547(6)¡, and the
average value (2.5255¡) is significantly shorter than the sum of
the ionic radii of Cd2+ and Cl¹ (2.78¡)14 which suggests that
these bonds are essentially covalent. The CdCl distances in the
present complex are also shorter than those found in other six-
coordinated anionic species, such as CdCl64¹ (2.588, 2.617, and
2.765¡).15 Selected bonding parameters are listed in Supporting
Information.16

In summary, we described a new method to prepare the
novel polymetallic carbonyl compound of cadmium with
chloroaryl bridges by a green path using simply o-vanillin or
o-vanillic acid with the cadmium(II) trichloroacetate salt at room
temperature and pressure, which could be a green source of
carbon monoxide in various catalytic processes. Work in this
direction is currently under way in our laboratory.
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